Dougherty Valley HS Chemistry Equilibrium – Le Chatelier's Principle Practice #2

Worksheet #3

Name:	Period: Seat#:
 Which change would cause the equilibrium to shift to the <u>righ</u>t in this endothermic rxn? <i>Circle an answer choice</i>! 	 What happens to equilibrium position in each situation 2SO_{3 (g)} ↔ 2SO_{2 (g)} + O_{2 (g)}
$CH_{4 (g)} + 2H_2S_{(g)} \leftrightarrow CS_{2 (g)} + 4H_{2 (g)}$	 Sulfur dioxide is added to the system.
a. Decrease the concentration of dihydrogen sulfide.b. Increase the pressure on the system.	 Sulfur trioxide is removed from the system.
c. Increase the temperature of the system.	
d. Increase the concentration of carbon disulfide.	• Oxygen is added to the system.
2) What would be part to the position of the equilibrium	A) When the volume of the following mixture of generation
 What would happen to the position of the equilibrium 2HgO (s) ↔ Hg (l) + O_{2 (g)} 	 When the volume of the following mixture of gases is increased, what will be the effect on equilibrium position? 4HCl (g) + O₂ (g) ↔ 2H₂O (g) + 2Cl₂ (g)
HgO is added to the system.	
• The pressure on the system increases.	
5) Predict the effect of decreasing the volume of the container for each equilibrium.	6) Predict the effect of decreasing the temperature on the position of the following equilibria.
• $2H_2O_{(g)} + N_{2(g)} \leftrightarrow 2H_{2(g)} + 2NO_{(g)}$	• H _{2 (g)} + Cl _{2 (g)} ↔ 2HCl _(g) + 49.7 kJ
• $SiO_{2(s)} + 4HF_{(g)} \leftrightarrow SiF_{4(g)} + 2H_2O_{(g)}$	• $2NH_{3(g)} \leftrightarrow N_{2(g)} + 3H_{2(g)}$ $\Delta H = +37.2 \text{ kJ}$
• CO (g) + H ₂ (g) \leftrightarrow C (s) + H ₂ O (g)	 CO (g) + H₂O (g) ↔ CO_{2 (g)} + H_{2 (g)} ΔH = -27.6 kJ
7) In the following reaction, will the [H ₂] increase or	8) How would an increase in pressure affect the [H ₂] in
decrease when equilibrium is reestablished after these stresses are applied? N₂ (g) + 3 H₂ (g) ↔ 2 NH₃ (g) + 22 kJ	the following reactions? • $2 H_{2(g)} + O_{2(g)} \leftrightarrow 2 H_2O_{(g)}$
 NH_{3 (g)} is added 	• 4 $H_{2(g)}$ + Fe ₃ O _{4(s)} \leftrightarrow 3 Fe (s) + 4 $H_{2}O$ (l)
• N _{2 (g)} is removed	• $H_{2(g)} + Cl_{2(g)} \leftrightarrow 2 HCl_{(g)}$
Pressure is increased	9) State Le Chatelier's Principle in your own words.

Dougherty Valley HS Chemistry Equilibrium – Le Chatelier's Principle Practice #2

10) In which direction, left or right, will the equilibrium shift	11) In the reaction: $CO_{2(g)} + H_{2(g)} + heat \leftrightarrow CO_{(g)} + H_2O_{(g)}$
if the following changes are made?	 Is heat absorbed or released by the forward
$2 \text{ NO }_{(g)} + \text{H}_{2(g)} \leftrightarrow \text{N}_2\text{O}_{(g)} + \text{H}_2\text{O}_{(g)} + 36 \text{ kJ}$	reaction?
NO is added	 In which direction will the equilibrium shift if these changes are made?
The system is cooled	CO is added
• H ₂ is removed	Temperature is increased
	CO ₂ is added
Pressure is increased	System is cooled
N ₂ O is added	H ₂ is removed
	Pressure is increased
H ₂ is added	Catalyst is added
	13) The reaction of iron(III) oxide with carbon monoxide
12) 2NO _(g) + H _{2(g)} ↔ N ₂ O _(g) + H ₂ O _(g) + heat What will happen to the [H ₂ O] when equilibrium is reestablished after these stresses are applied?	occurs in a blast furnace when iron ore it reduced to iron metal: $Fe_2O_{3 (s)} + 3CO_{(g)} \leftrightarrow 2Fe_{(l)} + 3CO_{2 (g)}$ Use Le Chatelier's Principle to predict the direction of
Temperature is increased	reaction when an equilibrium mixture is disturbed by:
A catalyst is added	Adding CO (g)
Pressure is decreased	Removing CO ₂ (g)
NO is added	Removing Fe (I)
 N₂O is removed 	Decrease the volume
 14) For the reaction, PCI_{5(g)}↔PCI_{3(g)} + CI_{2(g)} ΔH_{rxn}= 111 kJ Which way does the reaction shift when you: 	 15) For the reaction: 2HI_(g)↔H_{2(g)} + I_{2(g)} △H_{rxn} = -51.8kJ Which way does the reaction shift when you:
Remove Cl ₂	Add H ₂
Add Ne	Remove HI
Decrease volume	Add Kr
Increase pressure	Increase volume
Increase temperature	Decrease pressure
Add a catalyst	Decrease temperature
	•